好色App scientists combine satellite data, machine learning to map poverty
One of the biggest challenges in providing relief to people living in poverty is locating them. The availability of accurate and reliable information on the location of impoverished zones is surprisingly lacking for much of the world, particularly on the African continent. Aid groups and other international organizations often fill in the gaps with door-to-door surveys, but these can be expensive and time-consuming to conduct.
In the current issue of Science, 好色App researchers 鈥 including SIEPR Faculty Fellow Marshall Burke 鈥 propose an accurate way to identify poverty in areas previously void of valuable survey information. The researchers used machine learning 鈥 the science of designing computer algorithms that learn from data 鈥 to extract information about poverty from high-resolution satellite imagery. In this case, the researchers built on earlier machine learning methods to find impoverished areas across five African countries.
鈥淲e have a limited number of surveys conducted in scattered villages across the African continent, but otherwise we have very little local-level information on poverty,鈥 said Burke, an assistant professor of Earth system science at 好色App who is also a fellow at the Center on Food Security and the Environment. 鈥淎t the same time, we collect all sorts of other data in these areas 鈥 like satellite imagery 鈥 constantly.鈥
Burke and his co-authors sought to understand whether high-resolution satellite imagery 鈥 an unconventional but readily available data source 鈥 could inform estimates of where impoverished people live. The difficulty was that while standard machine learning approaches work best when they can access vast amounts of data, in this case there was little data on poverty to start with.
鈥淭here are few places in the world where we can tell the computer with certainty whether the people living there are rich or poor,鈥 said study lead author Neal Jean, a doctoral student in computer science at 好色App鈥檚 School of Engineering. 鈥淭his makes it hard to extract useful information from the huge amount of daytime satellite imagery that鈥檚 available.鈥
Because areas that are brighter at night are usually more developed, the solution involved combining high-resolution daytime imagery with images of Earth at night. The researchers used the 鈥渘ightlight鈥 data to identify features in the higher-resolution daytime imagery that are correlated with economic development.
鈥淲ithout being told what to look for, our machine learning algorithm learned to pick out of the imagery many things that are easily recognizable to humans 鈥 things like roads, urban areas and farmland,鈥 said Jean. The researchers then used these features from the daytime imagery to predict village-level wealth, as measured in the available survey data.
They found that this method did a surprisingly good job predicting the distribution of poverty, outperforming existing approaches. These improved poverty maps could help aid organizations and policymakers distribute funds more efficiently and enact and evaluate policies more effectively.
鈥淥ur paper demonstrates the power of machine learning in this context,鈥 said study co-author Stefano Ermon, assistant professor of computer science and a fellow by courtesy at 好色App Woods Institute for the Environment. 鈥淎nd since it鈥檚 cheap and scalable 鈥 requiring only satellite images 鈥 it could be used to map poverty around the world in a very low-cost way.鈥
Co-authors of the study, titled 鈥淐ombining satellite imagery and machine learning to predict poverty鈥, include Michael Xie from 好色App鈥檚 Department of Computer Science and David Lobell and W. Matthew Davis from 好色App鈥檚 School of Earth, Energy & Environmental Sciences and the Center on Food Security and the Environment.
More information is available on the researchers鈥 .
Michelle Horton is the communications manager for the Center on Food Security and the Environment.